bulletin of the chemical society of Japan, vol. 49 (6), 1725—1726 (1976)

The Cycloaddition of 1,2,4,5-Tetrazines with Indoles. The Formation of 5*H*-Pyridazino[4,5-*b*]indoles

Masahiko Таканаsні, Hiroyuki Ishida, and Masao Конмото

Department of Industrial Chemistry, Faculty of Engineering, Ibaraki University, Hitachi, Ibaraki 316

(Received March 13, 1976)

Synopsis. The cycloaddition of 3,6-disubstituted 1,2,4,5-tetrazines (1) with indoles (2) gave 1,4-disubstituted 5H-pyridazino[4,5-b]indoles (4).

It is well known¹⁾ that indoles add at the C₂ or C₃ position to certain olefins and acetylenes substituted by electron-withdrawing substituents. On the other hand, the cycloaddition at the C₂ and C₃ positions of indoles with some dipolarophiles has been reported. The cycloaddition of indoles with acetylenedicarboxylate²⁾ has been studied in detail, and the ring-expansion of the adducts has been observed to give benzoazepines. The 1:2 adducts were obtained by the reaction with *p*-benzoquinone and 1,4-naphtoquinone.³⁾ 1,3-Dipolar cycloaddition to indoles has been reported in the cases of azides⁴⁾ and nitrilimines.⁵⁾

Previously, we have described the reaction of 1,2,4,5-tetrazines with 2-phenyl-1-azirine.⁶⁾ In this paper we wish to report the cycloaddition of 1,2,4,5-tetrazines with indoles. Heating a toluene solution of 3,6-di-(2-pyridyl)-1,2,4,5-tetrazine ($\bf 1a$) and indole ($\bf 2a$) gave a crystalline product ($\bf 35\%$ yield). The elemental analysis and the mass spectral measurement supported the molecular formula of $C_{20}H_{13}N_5$. The IR spectrum showed an NH absorption at 3220 cm⁻¹, but the NMR spectrum did not show the methine protons anticipated for compound ($\bf 3a$). From these data it was concluded that the product was not the expected compound, $\bf 3a$, but the further-dehydrogenated com-

pound, $1,4-\operatorname{di}(2-\operatorname{pyridyl})-5H-\operatorname{pyridazino}[4,5-b]$ indole (4a). The same product, 4a, was also obtained in a low yield by the treatment of 1a with 3-methylindole (2b). When 1a was treated with 2-methylindole (2c), two products were obtained. One product was identical with 4a, while the other was (3d), an intermediate to 4a. From these results it has become apparent that the primary cycloadducts, 3a—d, immediately aromatize on the extrusion of R^1R^2 (H_2 , CH_4) to form 4a—b. Similar results have been reported recently by Seitz et al.7 for the reaction of dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate with thiophene, N-methylimidazole, 2,5-dimethylfuran, or N-methylpyrrole.

Experimental

The IR, UV, and NMR spectra were measured with a JASCO Model IRA-2 spectrometer, a Shimadzu Model MPS-501 spectrometer, and a Hitachi Model R-20 spectrometer respectively. A Shimadzu Model UM-3B apparatus was used for the elemental analysis.

Reaction of 1a with 2a. Å toluene solution (20 ml) of 1a (1.44 g, 6.1 mmol) and 2a (0.68 g, 5.8 mmol) was refluxed for 3 h. After cooling, the precipitates were filtered off and then washed with methanol to remove a by-product, 3,5-di(2-pyridyl)-1,2-dihydro-1,2,4,5-tetrazine, to give 1,4-di-(2-pyridyl)-5H-pyridazino[4,5-b]indole 4a (0.65 g, 35% yield). Recrystallization from benzene afforded pale yellow prisms; mp 202—204 °C. Found: C, 74.11; H, 3.76%. Calcd for $C_{20}H_{13}N_5$: C, 74.29; H, 4.05%. IR (KBr, cm⁻¹): 3220, 1615, 1587, 1579, 1538. UV (MeOH, nm (log ε)): 270 (sh, 4.45), 286 (4.52), 358 (3.85). NMR (CDCl₃, δ): 11.95 (s, 1H, NH), 7.10—9.15 (m, 12H, aromatic H). MS m/e (%): 323 (M⁺, 90), 322 (100), 294 (7.8), 293 (11), 266 (5.4), 245 (30), 219 (4.6), 192 (3.5), 161 (11).

Reaction of 1b with 2a. 1,4-Di(4-pyridyl)-5H-pyridazino [4,5-b]indole 4b (0.88 g, 24% yield) was obtained by refluxing a xylene solution (30 ml) of 1b (2.4 g, 10 mmol) and 2a (2.7 g, 23 mmol) for 7h. Recrystallization from pyridine afforded pale yellow prisms; mp>300 °C. Found: C, 74.22; H, 4.40%. Calcd for $C_{20}H_{13}N_5$: C, 74.29; H, 4.05%. IR (KBr, cm⁻¹): 3360, 3030, 2930, 2880, 2780, 1600, 1585, 1566, 1549. UV (MeOH, nm (log ε)): 224 (4.54), 272 (4.45), 352 (3.58).

Reaction of 1a with 2b. A toluene solution (40 ml) of 1a (0.94 g, 4.0 mmol) and 2b (0.84 g, 6.4 mmol) was refluxed for 68 h. After cooling, the precipitates were filtered, washed with methanol, and recrystallized from methanol to give a pale yellow product (0.18 g, 15% yield). Its mp and IR spectrum were identical with those of 4a.

Reaction of 1a with 2c. A toluene solution (30 ml) of 1a (0.71 g, 3.0 mmol) and 2c (0.57 g, 3.6 mmol) was refluxed for 22 h. After cooling, the precipitates were filtered, washed with methanol, and recrystallized from methanol to give 4a (0.13 g, 13% yield). The filtrate was concentrated in vacuo to give a small amount of precipitates, which were then recrystallized from methanol to afford red needles;

mp 177—183 °C. Found: C, 74.33; H, 4.80%. Calcd for $C_{21}H_{17}N_5$: C, 74.31; H, 5.05%. MS m/e (%): 339 (M⁺, 9.3), 325 (25), 324 (100), 261 (11), 78 (12).

The authors wish to express their thanks to Dr. Masatoshi Hirayama for the NMR measurements and to the Sankyo Co., Ltd., for the mass measurements.

References

- 1) R. J. Sundberg, "The Chemistry of Indoles," Academic Press, New York and London (1970).
- 2) a) R. M. Acheson, "Advances in Heterocyclic Chemistry," Vol. 1, p. 125, Academic Press, New York and London (1963); b) H. Plieninger and D. Wild, Chem. Ber., 99, 3063 (1966); c) L. Knorr, ibid., 36, 1272 (1903); d) W. E. Noland, W. C. Kuryla, and R. F. Lange, J. Am. Chem. Soc., 81, 6010 (1959); e) R. M. Acheson and J. N.
- Bridson, Chem. Commun., 1971, 1225; f) F. Fried, J. B. Taylor, and R. Westwood, ibid., 1971, 1226; g) R. M. Acheson, J. N. Bridson, T. R. Cecil, and A. R. Hands, J. Chem. Soc., Perkin Trans. I, 1972, 1569.
- 3) a) W. E. Noland and F. J. Baude, J. Org. Chem., 31, 3321 (1966); b) J. D. Bu'Lock and J. Harley-Mason, J. Chem. Soc., 1951, 703; c) K. K. Prasad, Tetrahedron Letters, 1974, 1361.
- 4) A. S. Bailey and J. E. White, J. Chem. Soc., B., 1966, 821.
- 5) a) M. Ruccia, N. Vivona, F. Piozzi, and M. C. Aversa, Gazz. Chim. Ital., 99, 588 (1969); b) M. Ruccia, N. Vivona, G. Cusmano, M. L. Marino, and F. Piozzi, Tetrahedron, 29, 3159 (1973).
- 6) M. Takahashi, N. Suzuki, and Y. Igari, *Bull. Chem. Soc. Jpn.*, **48**, 2605 (1975).
- 7) G. Seitz and T. Kaempchen, Chem. -Ztg., 99, 292 (1975); Chem. Abstr., 83, 114325d (1975).